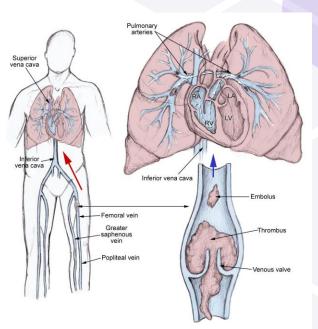

Acute pulmonary embolism (PE)

Dr. Abdulrahman Dakak

INTRODUCTION:

Acute pulmonary embolism (PE) is a <u>common</u> and sometimes fatal disease.

The approach to the <u>evaluation</u> should be <u>efficient</u> while simultaneously avoiding the risks of unnecessary testing so that therapy can be promptly initiated and potential <u>morbidity</u> <u>and mortality avoided</u>.



Definition:

Pulmonary embolism (PE) define as a blood clot (**thrombus**) becomes **lodged** in an artery in the lung and **blocks blood flow** to the lung.

usually **arises** from a thrombus that originates in the **deep venous system** of the **lower** extremities

it **rarely** also originates in the **pelvic**, **renal**, **upper extremity veins**, or **the right heart chambers**.

- Travel of 4 hours or more in the past month
- Surgery within the last 3 months
- Malignancy, especially lung cancer
- Current or past history of thrombophlebitis
- Trauma to the lower extremities and pelvis during the past 3 months

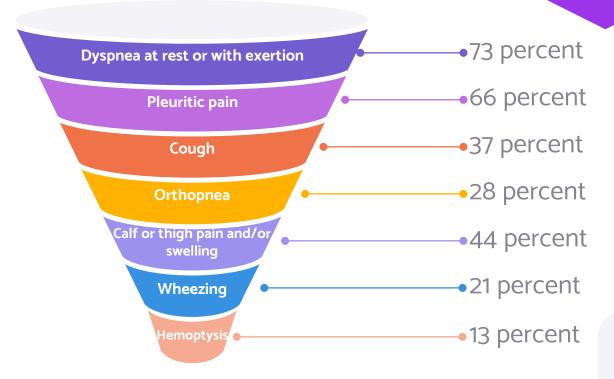
- Smoking
- Central venous instrumentation within the past 3 months
- Stroke, paresis, or paralysis
- Prior pulmonary embolism
- Heart failure
- Chronic obstructive pulmonary disease

CLINICAL PRESENTATION:

PE has a wide <u>Variety</u> of presenting features, ranging from no symptoms to shock or sudden death.

The most common presenting symptom is:

dyspnea usually with rapid onset, when main or lobar vessels affected.


chest pain (classically pleuritic but often dull) due to smaller, more peripheral emboli.

cough

History and examination

The most common symptoms in patients

Less common presentations include:

Less than 10 percent

transient or persistent <u>arrhythmias</u> (eg, atrial fibrillation)

Presyncope

Syncope

hemodynamic collapse

Hoarseness from a dilated pulmonary artery is a rare presentation (Ortner syndrome)

Laboratory tests

CBC and serum chemistries:

Leukocytosis

ESR + serum lactate + LDH + AST

Cr and eGFR for the safety of

angiography.

(ABG) and pulse oximetry:

Hypoxemia (74 percent). Widened alveolar-arterial gradient for oxygen (62 to 86 percent) Respiratory alkalosis and hypocapnia (41 percent). Hypercapnia, respiratory, and/or lactic acidosis are uncommon but can be seen in patients with massive PE associated with obstructive shock and respiratory arrest.

Laboratory tests

Brain natriuretic peptide (BNP):

Elevated (NT)-proB NP may be useful prognostically for risk stratification of patients diagnosed with acute PE.

Troponin:

useful **prognostically** but not diagnostically elevations usually resolve within 40 hours following PE, in contrast to the more prolonged elevation after acute myocardial injury

D-dimer:

An elevated D-dimer alone is

insufficient to diagnosis PE, but a

normal D-dimer can be us rule out PE

in patients with a low or intermediate

probability of PE

Electrocardiography

nonspecific

The most common findings are **tachycardia** and nonspecific

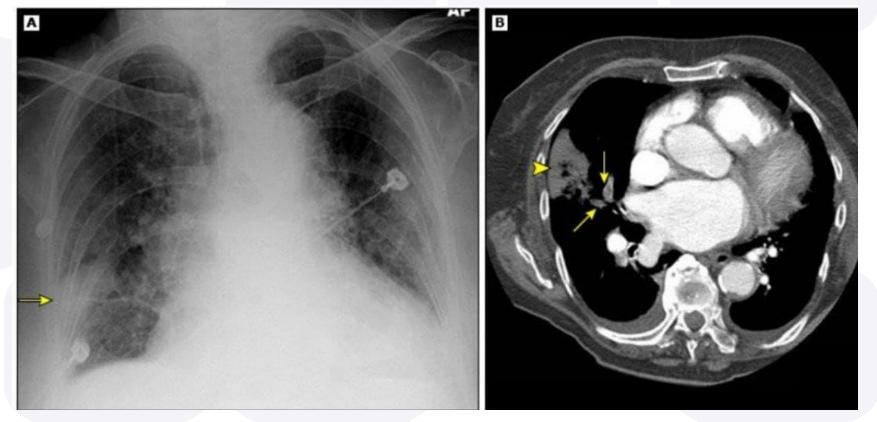
ST-segment and T-wave changes (70 percent)

S1Q3T3 pattern, right ventricular strain, new incomplete

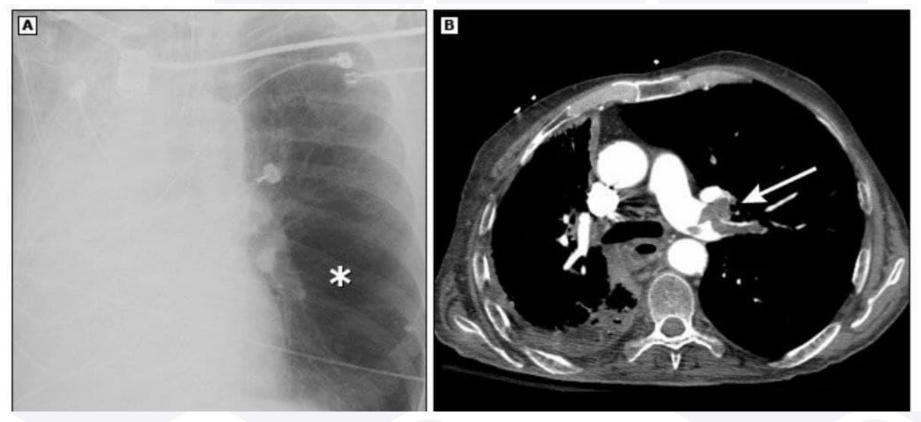
RBBB are uncommon less than 10 percent

CHEST RADIOGRAPH:

Nonspecific abnormalities on chest radiography

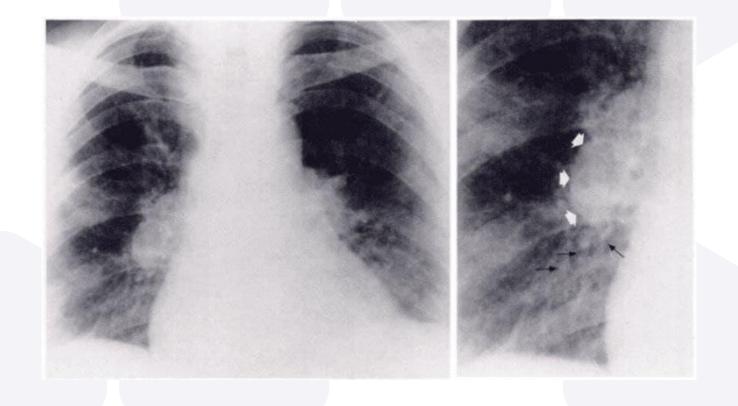

Normal in 12 to 22 percent of patients

performed to look for an alternative cause of the patient's


symptoms.

A Hampton hump, Westermark sign, and Palla sign are rare

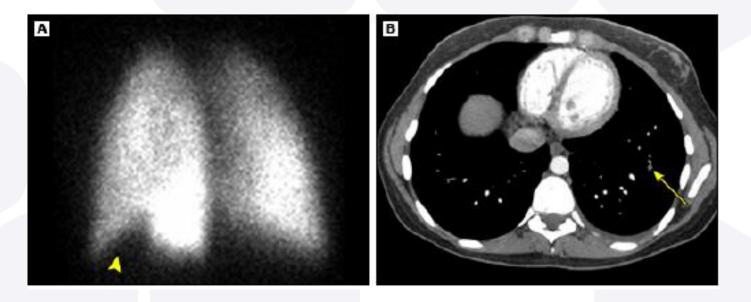
but, when present, should raise the suspicion for PE

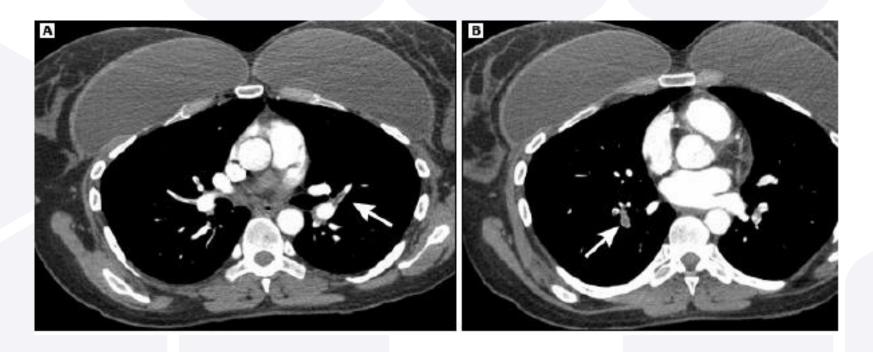


Hamptons hump in a patient with suspected pulmonary embolus. An anterior-posterior chest radiograph (A) shows a wedge-shaped opacity in the lateral segment of the middle lobe (arrow). CT image through the midchest shows the corresponding wedge-shaped opacity (arrowhead) and thrombus in the pulmonary arteries (arrows).

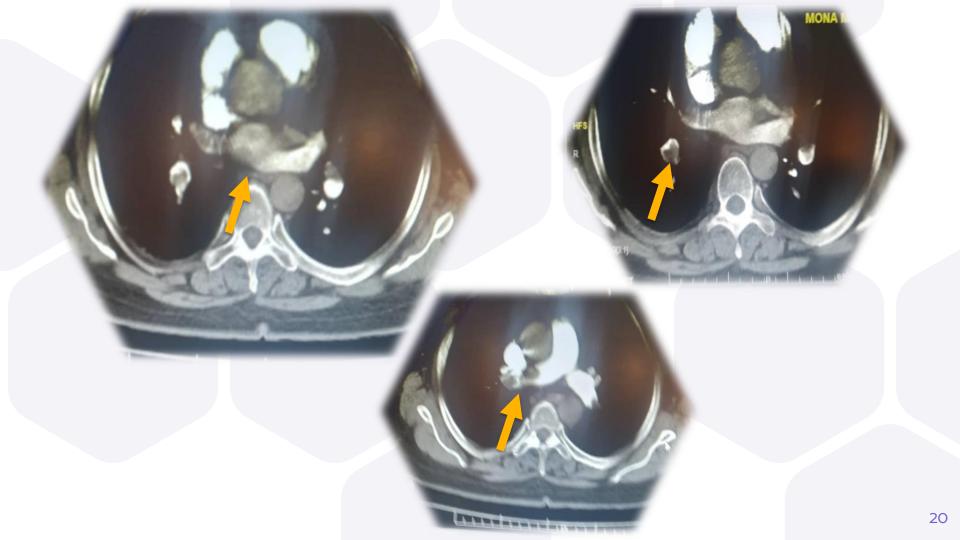
Westermark sign in a patient with occlusive pulmonary embolism.

- (A) Chest radiograph magnified A-P view shows a region of oligemia in the left lower lung (asterisk).
- (B) Chest CT shows a large thrombus in the left main pulmonary artery (arrow)


PALLA SIGN


CT pulmonary angiography (CTPA)

For most patients with suspected PE, CTPA is the firstchoice diagnostic imaging modality because it is sensitive and specific for the diagnosis of PE.


A filling defect in any branch of the pulmonary artery (main, lobar, segmental, subsegmental) that becomes evident after contrast enhancement is diagnostic of PE

Small pulmonary emboli. VQ scan left anterior oblique view perfusion image (A) shows a subsegmental defect (arrowhead) reported as intermediate probability of pulmonary embolism. Chest CT pulmonary angiogram (B) shows a thrombus in one of the left lower lobe pulmonary artery branches (arrow).

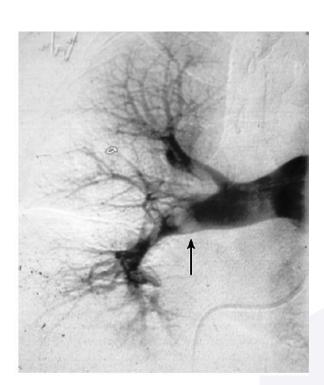
Multifocal pulmonary emboli. Chest CT angiogram images show filling defects in the pulmonary arteries of the lingula (A, arrow) and right lower lobe (B, arrow).

Ventilation perfusion (V/Q) scanning

A segmental or subsegmental perfusion defect with normal ventilation are diagnostic of PE.

Images are interpreted as high, intermediate, or low probability of PE or normal.

A high-probability V/Q scan and high probability of PE confirms PE. A high-probability V/Q scan and high probability of PE confirms PE.


Catheter-based pulmonary angiography

The demonstration of a

filling defect or abrupt

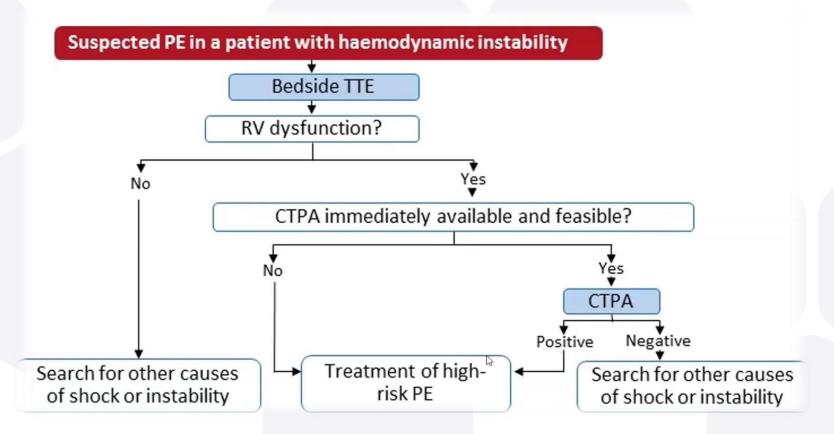
cutoff of a vessel is

diagnostic of an embolus.

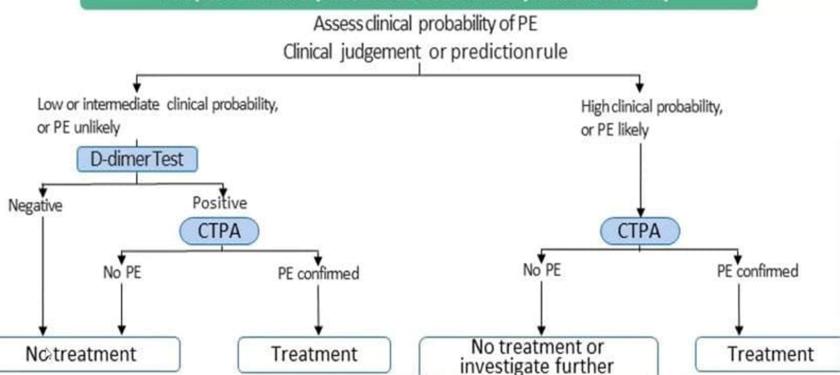
Lower-extremity ultrasound with Doppler

new diagnosis of DVT in the setting of symptoms consistent with PE is highly suggestive, although not definitively diagnostic, of PE.

useful for patients suspected of having a PE but definitive imaging is contraindicated, or delayed.


DIAGNOSIS

Definition of hemodynamic instability


(1) Cardiac arrest	(2) Obstructive shock	(3) Persistent hypotension	
Need for cardiopulmonary resuscitation	Systolic BP <90 mmHg, or vasopressors required to achieve a BP ≥90 mmHg despite adequate filling status	Systolic BP <90 mmHg, or systolic BP drop ≥40 mmHg, either lasting longer than 15 minutes and not caused by new- onset arrhythmia,	
	And		
	End-organ hypoperfusion (altered mental status; cold, clammy skin; oliguria/anuria; increased serum lactate)	hypovolaemia, or sepsis	

Diagnostic algorithm for suspected PE haemodynamic instability

Diagnostic algorithm for suspected PE without haemodynamic instability

Suspected PE in a patient without haemodynamic instability

Assessment of pulmonary embolism severity and the risk of early death

Hemodynamic instability

Clinical parameter of pe severity (sPSI)

Cardiac troponin levels

RV dysfunction on imaging Echo or

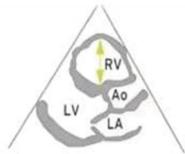
Original and simplified pulmonary embolism severity index:

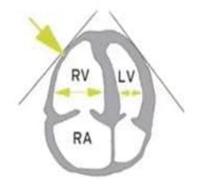
predictors	points		
Demographic characteristics			
age	1 pt y		
Male sex	+10		
Comorbid illnesses			
Cancer	+30		
Heart failure	+10		
Chronic lung disease	+10		
Clinical findings			
Pulse >110/min	+20		
SBP< 100mmhg	+30		
RR> 30/min	+20		
Temp< 36c	+20		
AMS	+60		
Arterial O2 sat	+20		

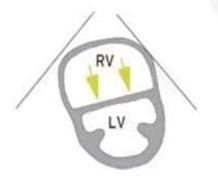
class	score	30 day mortality
I	< 65	1.1%
II	66-85	3.1%
III	86-105	6.5%
IV	106-125	10.4%
V	>125	24.5%

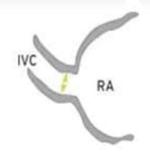
Smplified pulmonary embolism severity index (sPESI)

Parameters	Points
Age >80 years	+1
History of cancer	+1
History of cardiopulmonary disease	+1
Systolic BP <90 mm Hg	+1
Heart rate >110 beats/minute	+1
O ₂ saturation <90%	+1


0 points: = 30 day mortality risk 1.0% 1 point(s) = 30 day mortality risk 10.9%

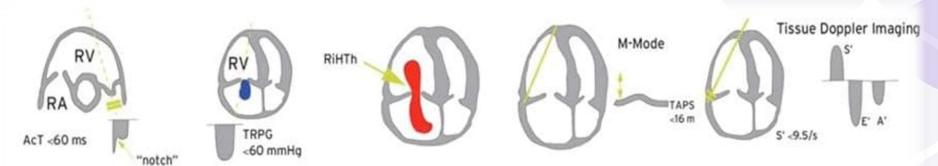

Wells criteria and modified Wells criteria: Clinical assessment for pulmonary embolism


 Clinical symptoms of DVT (leg swelling, pain with palpation) 	3.0
Other diagnosis less likely than pulmonary embolism	3.0
■ Heart rate >100	1.5
■ Immobilization (≥3 days) or surgery in the previous four weeks	1.5
■ Previous DVT/PE	1.5
■ Hemoptysis	1.0
- Hemoptysis	
Malignancy	1.0
	1.0 Score
■ Malignancy	
Malignancy Probability	
Malignancy Probability Traditional clinical probability assessment (Wells criteria)	Score
Malignancy Probability Traditional clinical probability assessment (Wells criteria) High	Score >6.0
 Malignancy Probability Traditional clinical probability assessment (Wells criteria) High Moderate 	>6.0 2.0 to 6.0
 Malignancy Probability Traditional clinical probability assessment (Wells criteria) High Moderate Low 	>6.0 2.0 to 6.0



Echocardiography

A. Enlarged right ventricle, parasternal long axis view


B. Dilated RV with basal RV/LV ratio >1.0, and McConnell sign (arrow), four chamber view

C. Flattened interventricular septum (arrows) parasternal short axis view

D. Distended inferior vena cava with diminished inspiratory collapsibility, subcostal view

Echocardiography

E. 60/60 sign: coexistence of acceleration time of pulmonary ejection <60 ms and midsystolic "notch" with mildy elevated (<60 mmHg) peak systolic gradient at the tricuspic valve F. Right heart mobile thrombus detected in right heart cavities (arrow) G. Decreased tricuspid annular plane systolic excursion (TAPSE) measured with M-Mode (<16 mm) H. Decreased peak systolic (S') velocity of tricuspid annulus (<9.5 cm/s)

Acute Pulmonary Embolism Classification:

Early mortality risk		Indicators of risk			
		Haemo- dynamic instability	Clinical parameters of PE severity/ comorbidity: PESI III–Vor sPESI≥1	RV dysfunction on TTE or CTPA	Elevated cardiac troponin levels
High		+	(+)	+	(+)
Interme-	Intermediate-high	÷	+	+	+
diate	Intermediate-low	-	+	One (or none) positive	
Low		<u></u>		÷	Assessment optional; if assessed, negative

TREATMENT

INITIAL THERAPIES

Hemodynamic support

Respiratory support

Hemodynamic support:

Intravenous fluid

first-line therapy for patients

with hypotension

In general, we prefer small

volumes usually 250 to 500.

Vasopressors

administered when

adequate perfusion is not

restored with IVF.

norepinephrine is generally

preferred.

Respiratory support:

The O2 saturation target ≥90 percent.

Severe hypoxemia and hemodynamic collapse, should

prompt consideration of mechanical ventilation.

THROMPOYTIC THERAPY:

Recombinant tissue type plasminogen activator

Absolut Indication;

Massive PE

Potential indications:

Patients with severe right ventricular dysfunction due to PE.

Presence of severe hypoxemia.

Patients with acute PE who appear to be decompensating but are not yet hypotensive.

Extensive clot burden.

CONTRAINDICATIONS FOR THROMPOYTIC THERAPY:

Absolute Contraindications

auma Cancer

Major trauma, surgery, head trauma within 3 weeks

Prior hemorrhagic stroke

Ischemic stroke within

prior 6 months

Central nervous system

neoplasm

Gastrointestinal bleeding within one

month

Active bleeding

Age > 75-80

Transient ischemic attack within

6 months

Oral anticoagulant therapy

Relative Contraindications

Noncompressible punctures

Traumatic resuscitation

Refractory hypertension

Advanced liver disease

Infective endocarditis

Active peptic ulcer

Pregnancy or within one week

postpartum

For most patients who do not have hemodynamic compromise due to acute PE, However, thrombolysis may be administered on a case-bycase basis in those assessed to be at the **highest risk of** death from PE, In whom the benefits are considered by the clinician to outweigh the risk of hemorrhage

THROMPOIYTIC AGENTS:

alteplase:

100mg /2 hours

IV

20mg bolus IV

over 15 min then

80 mg/ 2 hrs.

Less bleeding

Streptokinase:

250000 units IV

over 30 min then

100000 units / hr for

24 hrs.

Urokinase:

4400 units /kg IV

over 10 min then

4400 units /kg /hr

for 12 hrs.

UK & SK are not

longer available

for this indication

in US.

Following thrombolysis patients should be anticoagulated with IV UFH without bolus.

We avoid LMWH & oral agents.

Empiric anticoagulation:

The administration depends upon the **risk of bleeding**, **clinical suspicion** for PE and the **expected timing of diagnostic** tests.

initial parenteral therapy is recommended with n (LMWH) above (UH) infusion due to the rapid rise of therapeutic drug levels and decreased risk of heparin-induced thrombocytopenia.

Heparin infusions should be considered if there is concern for impending **hemodynamic compromise** and consideration for imminent **endovascular intervention**.

Classified based on risk for bleeding

Low risk for bleeding

We start the treatment with anticoagulation if:

- 1. Wells score >6
- 2. Wells score 2 to 6 and the diagnostic evaluation take longer than 4h
- 3. Wells score <2 and the evaluation take longer than 24 hours

high risk for bleeding

recent surgery,
hemorrhagic
stroke, active bleeding
aortic dissection,
intracranial or spinal
cord tumors
alternate therapies:

- 1. inferior vena cava filter,
- **2. embolectomy** can be initiated if PE is confirmed.

Moderate risk for bleeding

anticoagulant
therapy
administered on a
case-by case basis
according to the
assessed risk-benefit
ratio

Typically, menstruation, epistaxis, and the presence of minor hemoptysis are not contraindications to anticoagulation but should be monitored during anticoagulant therapy.

Low molecular weight heparin (SC LMWH)

Unfractionated heparin (IV UFH)

Therapeutic options of acute PE

Fondaparinux (SC)

Oral anticoagulant

Acute phase treatment of intermediate – low risk PE

Recommendations

Initiation of anticoagulation

Initiation of anticoagulation is recommended without delay in patients with high or intermediate clinical probability of PE, while diagnostic work-up is in progress.

If anticoagulation is initiated parenterally, LMWH or fondaparinux is recommended (over UFH) for most patients.

Oral anticoagulants

When oral anticoagulation is started in a patient with PE who is eligible for a NOAC (apixaban, dabigatran, edoxaban, or rivaroxaban), a NOAC is recommended in preference to a VKA.

Acute phase treatment of intermediate – low risk PE

Recommendations

Reperfusion treatment

Rescue thrombolytic therapy is recommended for patients with haemodynamic deterioration on anticoagulation treatment.

As an alternative to rescue thrombolytic therapy, surgical embolectomy or percutaneous catheter- directed treatment should be considered for patients with haemodynamic deterioration on anticoagulation treatment.

Routine use of primary systemic thrombolysis is not recommended in patients with intermediate- or low-risk PE.

Definitive therapy for confirmed PE

Hemodynamically stable low-risk/nonmassive PE

1.Low bleeding risk we start with

anticoagulant therapy.

2. high bleeding risk inferior

vena cava (IVC) filter be placed

<u>Hemodynamically stable</u> <u>intermediate-risk/submassive</u>

PΕ

anticoagulation should be administered and patients monitored closely for deterioration.

Thrombolysis and/or catheter-based therapies may be considered.

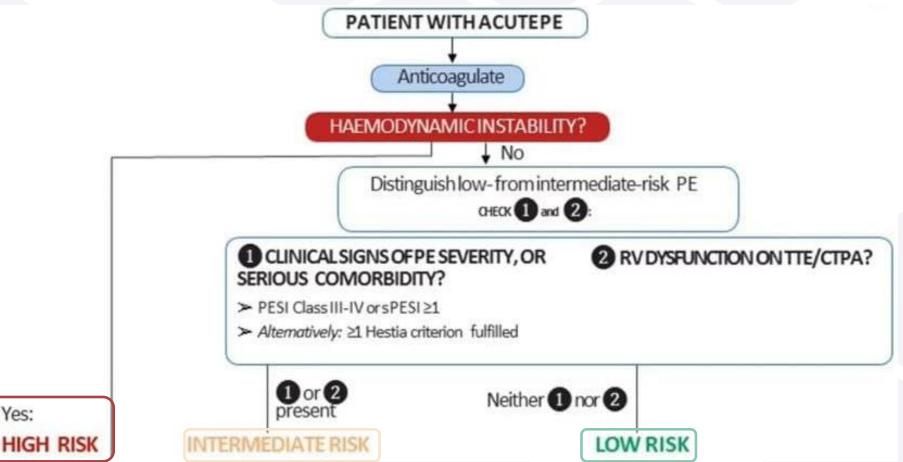
Definitive therapy for confirmed PE

Hemodynamically unstable PE

No contraindications to thrombolysis

systemic thrombolytic therapy followed by anticoagulation rather than anticoagulation alone.

Contraindications to thrombolysis


catheter or surgical embolectomy rather than observation.

Failed thrombolysis

Repeat systemic thrombolysis catheter-directed thrombolysis catheter or surgical embolectomy

Mangement strategy for acute PE

Yes:

Lenghth of treatment for PE:

In general, the following applies

<u>Minimum duration:</u> For most patients minimum of three months regardless of whether or not the event was provoked

Extending anticoagulation: we suggest extending anticoagulation for a finite period until the risk factor is resolved, rather than stopping anticoagulation at three months

<u>Monitoring:</u> patients on factor Xa and direct thrombin inhibitors and those >75 years should be monitored clinically for recurrence and bleeding

Bleeding: Major bleeding rates on warfarin and LMW heparin during the first three months of anticoagulant therapy but they are less than 2%.

