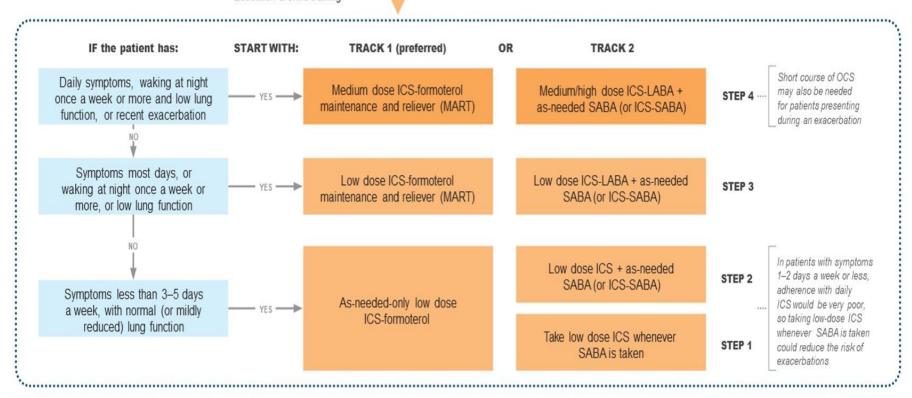

Asthma Management

Dr. M. Hadi Alakkad


Stable Asthmatic Patient Approach

Confirm diagnosis if necessary Symptom control & modifiable risk factors (see Box 2-2) Comorbidities Inhaler technique & adherence Patient (and parent/caregiver) REVIEW preferences and goals Symptoms Exacerbations Side-effects Lung function ICS-containing medications Comorbidities START (as below) Patient (or parent/ Treatment of modifiable risk caregiver) satisfaction factors and comorbidities Non-pharmacological strategies Education & skills training

GINA 2024 - STARTING TREATMENT

in adults and adolescents 12+ years with a diagnosis of asthma

These recommendations are based on the (little) available evidence and consensus

GINA 2024 – Adults & adolescents 12+ years

Personalized asthma management

Assess, Adjust, Review for individual patient needs

Confirmation of diagnosis if necessary
Symptom control & modifiable
risk factors (see Box 2-2)
Comorbidities
Inhaler technique & adherence
Patient preferences and goals

Symptoms
Exacerbations
Side-effects
Lung function
Comorbidities
Patient satisfaction

REVIEW

Treatment of modifiable risk factors and comorbidities
Non-pharmacological strategies
Asthma medications including ICS (as below)
Education & skills training

TRACK 1: PREFERRED CONTROLLER and RELIEVER

Using ICS-formoterol as the reliever* reduces the risk of exacerbations compared with using a SABA reliever, and is a simpler regimen

STEPS 1-2

STEP 1

SABA taken*

Take ICS whenever

As-needed-only low dose ICS-formoterol

STEP 3

Low dose maintenance ICS-formoterol

STEP 4

Medium dose maintenance ICS-formoterol

STEP 5

Add-on LAMA
Refer for assessment
of phenotype. Consider
high dose maintenance
ICS-formoterol,
± anti-IgE, anti-IL5/5R,
anti-IL4Ra, anti-TSLP

RELIEVER: As-needed low-dose ICS-formoterol*

See GINA severe asthma guide

TRACK 2: Alternative CONTROLLER and RELIEVER

Before considering a regimen with SABA reliever, check if the patient is likely to adhere to daily controller treatment

Other controller options (limited indications, or less evidence for efficacy or safety – see text)

STEP 2

Low dose maintenance ICS

STEP 3

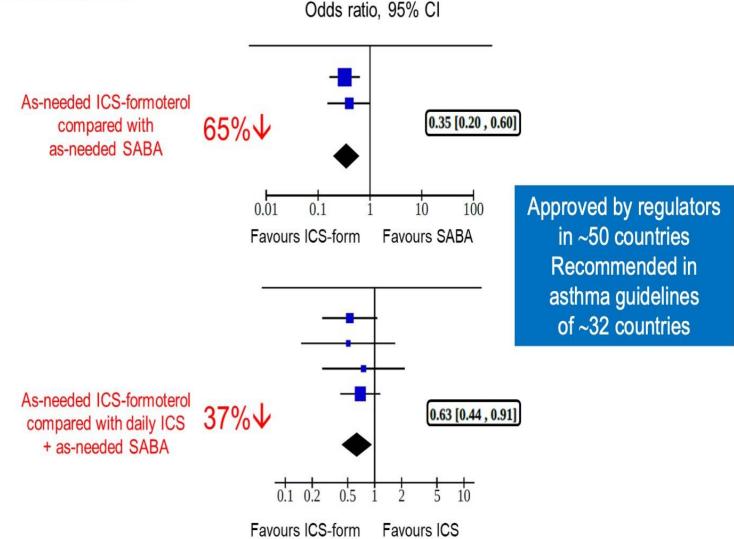
Low dose maintenance ICS-LABA

STEP 4

Medium/high dose maintenance ICS-LABA

STEP 5

Add-on LAMA Refer for assessment of phenotype. Consider high dose maintenance ICS-LABA, ± anti-IgE, anti-IL5/5R, anti-IL4Rα, anti-TSLP


RELIEVER: As-needed ICS-SABA*, or as-needed SABA

Low dose ICS whenever SABA taken*, or daily LTRA†, or add HDM SLIT Medium dose ICS, or add LTRA[†], or add HDM SLIT Add LAMA or add LTRA† or add HDM SLIT, or switch to high dose ICS-only Add azithromycin (adults) or add LTRA[†]. As last resort consider adding low dose OCS but consider side-effects

^{*}Anti-inflammatory reliever; †advise about risk of neuropsychiatric adverse effects

As-needed-only ICS-formoterol reduces emergency visits and hospitalisations in patients with mild asthma

From Crossingham et al, Cochrane Database Syst Rev 2021 (n=9565)

Assessment of asthma control

Ideally, patients should be seen **1-3 months** after starting treatment and every **3-12 months** thereafter

Asthma symptoms control tools for adults

Simple screening tools

A. Asthma symptom control		Level of	asthma symp	tom control
In the past 4 weeks, has the patient had:		Well controlled	Partly controlled	Uncontrolled
Daytime asthma symptoms more than twice/week?	Yes□ No□]		
Any night waking due to asthma?	Yes□ No□	- None	1–2	3–4
SABA reliever for symptoms more than twice/week?*	Yes□ No□	of these	of these	of these
Any activity limitation due to asthma?	Yes□ No□]		

Asthma symptoms control tools for adults

Asthma Control Test (ACT)

Asthma Control Test™

 In the <u>past 4 weeks</u>, how much of the time did your <u>asthma</u> keep you from getting as much done at work, school or at home?

All of the time	Most of the time	Some of the time	A little of the time	None of the time
0	0	0	0	0
1	2	3	4	5

2. During the past 4 weeks, how often have you had shortness of breath?

More than Once a day	Once a day	3 to 6 times a week	Once or twice a week	Not at all
0	0	0	0	0
1	2	3	4	5

3. During the <u>past 4 weeks</u>, how often did your asthma symptoms (wheezing, coughing, shortness of breath, chest tightness or pain) wake you up at night or earlier than usual in the morning?

the morning:				
4 or more	2 to 3 nights			
nights a week	a week	Once a week	Once or twice	Not at all
0	0	0	0	0
1	2	3	4	5

4. During the <u>past 4 weeks</u>, how often have you used your rescue inhaler or nebulizer medication (such as albuterol)?

3 or more times	1 or 2 times	2 or 3 times per	Once a week or	
per day	per day	week	less	Not at all
0	0	0	0	0
1	2	3	4	5

5. How would you rate your asthma control during the past 4 weeks?

Not Controlled at All	Poorly Controlled	Somewhat Controlled	Well Controlled	Completely Controlled
0	0	0	0	0
1	2	3	4	5

Asthma symptoms control tools for adults

The asthma control test (ACT) is a validated, commonly used numeric tool to distinguish different levels of asthma symptom control. Possible scores range from 5 to 25, with a higher score indicating better symptom control.

Asthma symptoms control tools for adults

ACT scores are classified as follows:

20-25, well-controlled asthma 16-19, not well-controlled 5-15, very poorly controlled

Lung function does not correlate strongly with asthma symptoms

Lung function at individual visits is of **limited use for guiding treatment** because of its large (up to 20%) **visit-to-visit variation**

Low FEV1 is a strong independent predictor of risk of exacerbations even after adjustment for symptom frequency

A low FEV₁ percent predicted:

- Identifies patients at risk of asthma exacerbations, independent of symptom levels, especially if FEV₁ is <60% predicted 96,105,162,163
- Is a risk factor for lung function decline, independent of symptom levels 116
- If symptoms are few, suggests limitation of lifestyle, or poor perception of airflow limitation, ¹⁶⁴ which may be due to untreated airway inflammation. ¹⁵²

Normal FEV₁: A 'normal' or near-normal FEV₁ in a patient with frequent respiratory symptoms (especially when symptomatic) prompts consideration of alternative causes for the symptoms (e.g., cardiac disease, or cough due to post-nasal drip or gastroesophageal reflux disease;

Persistent bronchodilator responsiveness: Finding significant bronchodilator responsiveness (increase in FEV₁ >12% and >200 mL from baseline)³⁵ in a patient taking ICS-containing treatment, or who has taken a SABA within 4 hours, or a LABA within 12 hours (or 24 hours for a once-daily LABA), suggests uncontrolled asthma, particularly poor adherence and/or incorrect technique.

Lung function should be assessed

- At diagnosis or start of treatment
- After 3-6 months of ICS- containing
 treatment to assess the patient's personal
 best FEV1and

Lung function should be assessed

- Periodically thereafter (e.g. at least once every 1–2 years; more often in at-risk patients and those with severe asthma) to identify progressive decline.

Stepping up

Short- term step up (for 1-2 weeks)

A **short term increase** in maintenance ICS dose for **1-2 weeks** may be necessary (during viral infection or seasonal allergen).

This increase may be initiated by the patient according to their written asthma action plan

Sustained step up (for at least 2-3 months)

Some patients whose asthma is uncontrolled or partially controlled may benefit **from increasing the maintenance dose**.

Sustained step up (for at least 2-3 months)

A **step up** in treatment may be recommended after **confirming** that the symptoms are

- Due to asthma,
- Inhaler technique
- Adherence are satisfactory
- Modifiable risk factor such as smoking have been addressed

Stepping Down

Once good **asthma control** has been achieved and maintained for **2-3 months** and lung function has reached a plateau, treatment can often be reduced, without loss of asthma control.

GINA 2024 – Adults & adolescents 12+ years

Personalized asthma management

Assess, Adjust, Review for individual patient needs

Confirmation of diagnosis if necessary Symptom control & modifiable risk factors (see Box 2-2) Comorbidities Inhaler technique & adherence Patient preferences and goals

Symptoms Exacerbations Side-effects Lung function Comorbidities Patient satisfaction

REVIEW

Treatment of modifiable risk factors and comorbidities Non-pharmacological strategies Asthma medications including ICS (as below) Education & skills training

STEP 4

Medium dose

maintenance

ICS-formoterol

STEP 5

Add-on LAMA Refer for assessment of phenotype. Consider high dose maintenance ICS-formoterol. ± anti-IgE, anti-IL5/5R, anti-IL4Ra, anti-TSLP

See GINA severe asthma guide

TRACK 1: PREFERRED CONTROLLER and **RELIEVER**

Using ICS-formoterol as the reliever* reduces the risk of exacerbations compared with using a SABA reliever, and is a simpler regimen

STEPS 1 - 2

STEP 1

SABA taken*

Take ICS whenever

As-needed-only low dose ICS-formoterol

Low dose maintenance ICS-formoterol

STEP 3

RELIEVER: As-needed low-dose ICS-formoterol*

TRACK 2: Alternative **CONTROLLER** and **RELIEVER**

Before considering a regimen with SABA reliever, check if the patient is likely to adhere to daily controller treatment

Other controller options (limited indications, or less evidence for efficacy or safety - see text)

STEP 3

Low dose maintenance **ICS-LABA**

Medium/high dose maintenance ICS-LABA

STEP 4

Add-on LAMA Refer for assessment of phenotype. Consider high dose maintenance ICS-LABA, ± anti-lgE, anti-IL5/5R, anti-IL4Ra. anti-TSLP

STEP 5

RELIEVER: As-needed ICS-SABA*, or as-needed SABA

Low dose ICS whenever SABA taken*. or daily LTRA+, or add HDM SLIT

Medium dose ICS, or add LTRA+, or add HDM SLIT

Add LAMA or add LTRA† or add HDM SLIT, or switch to high dose ICS-only

Add azithromycin (adults) or add LTRA+. As last resort consider adding low dose OCS but consider side-effects

STEP 2

Low dose

maintenance ICS

^{*}Anti-inflammatory reliever; †advise about risk of neuropsychiatric adverse effects

GINA 2024 – Adults & adolescents 12+ years

Personalized asthma management

Assess, Adjust, Review for individual patient needs

Confirmation of diagnosis if necessary Symptom control & modifiable risk factors (see Box 2-2) Comorbidities Inhaler technique & adherence Patient preferences and goals

Symptoms Exacerbations Side-effects Lung function Comorbidities Patient satisfaction

REVIEW Treatment of modifiable risk factors and comorbidities Non-pharmacological strategies Asthma medications including ICS (as below)

Education & skills training

STEP 4

Medium dose maintenance ICS-formoterol

Add-on LAMA Refer for assessment of phenotype. Consider high dose maintenance

STEP 5

ICS-formoterol. ± anti-IgE, anti-IL5/5R,

anti-IL4Ra, anti-TSLP

TRACK 1: PREFERRED

CONTROLLER and **RELIEVER**

Using ICS-formoterol as the reliever* reduces the risk of exacerbations compared with using a SABA reliever, and is a simpler regimen

STEPS 1 - 2

STEP 1

SABA taken*

Take ICS whenever

As-needed-only low dose ICS-formoterol

Low dose maintenance ICS-formoterol

STEP 3

RELIEVER: As-needed low-dose ICS-formoterol*

See GINA severe asthma guide

TRACK 2: Alternative

CONTROLLER and **RELIEVER**

Before considering a regimen with SABA reliever, check if the patient is likely to adhere to daily controller treatment

Other controller options (limited indications, or less evidence for efficacy or safety - see text)

STEP 2

Low dose maintenance ICS STEP 3

Low dose maintenance **ICS-LABA**

STEP 4

Medium/high dose maintenance ICS-LABA

STEP 5

Add-on LAMA Refer for assessment of phenotype. Consider high dose maintenance ICS-LABA, ± anti-lgE, anti-IL5/5R, anti-IL4Ra. anti-TSLP

RELIEVER: As-needed ICS-SABA*, or as-needed SABA

Low dose ICS whenever SABA taken*. or daily LTRA+, or add HDM SLIT

Medium dose ICS, or add LTRA+, or add HDM SLIT

Add LAMA or add LTRA† or add HDM SLIT, or switch to high dose ICS-only

Add azithromycin (adults) or add LTRA+. As last resort consider adding low dose OCS but consider side-effects

^{*}Anti-inflammatory reliever; †advise about risk of neuropsychiatric adverse effects

GINA 2024 – Adults & adolescents 12+ years

Personalized asthma management

Assess, Adjust, Review for individual patient needs

Confirmation of diagnosis if necessary Symptom control & modifiable risk factors (see Box 2-2) Comorbidities Inhaler technique & adherence Patient preferences and goals REVIEW

Symptoms Exacerbations Side-effects Lung function Comorbidities Patient satisfaction

Treatment of modifiable risk factors and comorbidities Non-pharmacological strategies Asthma medications including ICS (as below) Education & skills training

STEP 5

Add-on LAMA Refer for assessment of phenotype. Consider high dose maintenance ICS-formoterol. ± anti-IgE, anti-IL5/5R, anti-IL4Ra, anti-TSLP

TRACK 1: PREFERRED CONTROLLER and **RELIEVER**

Using ICS-formoterol as the reliever* reduces the risk of exacerbations compared with using a SABA reliever, and is a simpler regimen

STEPS 1-2

STEP 1

SABA taken*

Take ICS whenever

As-needed-only low dose ICS-formoterol

Low dose maintenance ICS-formoterol

STEP 3

maintenance ICS-formoterol

Medium dose

STEP 4

See GINA severe asthma guide

RELIEVER: As-needed low-dose ICS-formoterol*

TRACK 2: Alternative **CONTROLLER** and **RELIEVER**

Before considering a regimen with SABA reliever, check if the patient is likely to adhere to daily controller treatment

Other controller options (limited indications, or less evidence for efficacy or safety - see text)

STEP 2

Low dose maintenance ICS

STEP 3

Low dose maintenance **ICS-LABA**

Add-on LAMA STEP 4 Refer for assessment Medium/high dose of phenotype. Consider maintenance high dose maintenance ICS-LABA ICS-LABA, ± anti-lgE, anti-IL5/5R, anti-IL4Ra. anti-TSLP

STEP 5

RELIEVER: As-needed ICS-SABA*, or as-needed SABA

Low dose ICS whenever SABA taken*. or daily LTRA+, or add HDM SLIT

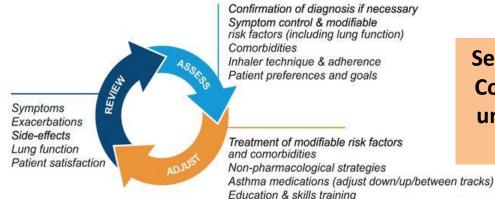
Medium dose ICS, or add LTRA+, or add HDM SLIT

Add LAMA or add LTRA† or add HDM SLIT, or switch to high dose ICS-only

Add azithromycin (adults) or add LTRA+. As last resort consider adding low dose OCS but consider side-effects

^{*}Anti-inflammatory reliever; †advise about risk of neuropsychiatric adverse effects

Assessing Asthma Severity


Assessing Asthma Severity

Sever Asthma is defined that remains unconrolled despite optimized treatment with high dose ICS-LABA, or that requires high dose ICS-LABA to prevent it from becoming uncontrolled

Adults & adolescents 12+ years

Personalized asthma management

Assess, Adjust, Review for individual patient needs

Sever Asthma
Controlled or
uncontrolled
step 5

CONTROLLER and PREFERRED RELIEVER

(Track 1). Using ICS-formoterol as reliever reduces the risk of exacerbations compared with using a SABA reliever STEPS 1-2

As-needed low dose ICS-formoterol

STEP 3

Low dose maintenance ICS-formoterol STEP 4

Medium dose maintenance ICS-formoterol STEP 5

Add-on LAMA
Refer for phenotypic
assessment ± anti-IgE,
anti-IL5/5R, anti-IL4R
Consider high dose
ICS-formoterol

RELIEVER: As-needed low-dose ICS-formoterol

CONTROLLER and

ALTERNATIVE RELIEVER (Track 2). Before considering a regimen with SABA reliever.

check if the patient is likely to be adherent with daily controller

Other controller options for either track

STEP 1

Take ICS whenever SABA taken

STEP 2

Low dose maintenance ICS

STEP 3

Low dose maintenance ICS-LABA STEP 4

Medium/high dose maintenance ICS-LABA STEP 5

Add-on LAMA
Refer for phenotypic
assessment ± anti-IgE,
anti-IL5/5R, anti-IL4R
Consider high dose
ICS-LABA

RELIEVER: As-needed short-acting β2-agonist

Low dose ICS whenever SABA taken, or daily LTRA, or add HDM SLIT Medium dose ICS, or add LTRA, or add HDM SLIT Add LAMA or LTRA or HDM SLIT, or switch to high dose ICS Add azithromycin (adults) or LTRA; add low dose OCS but consider side-effects

Assessing Asthma Severity

Moderate Asthma is curruntly defined as asthma that is well controlled with step 3 or step 4 treatment

Adults & adolescents 12+ years

Personalized asthma management

Assess, Adjust, Review for individual patient needs

Confirmation of diagnosis if necessary
Symptom control & modifiable
risk factors (including lung function)
Comorbidities
Inhaler technique & adherence
Patient preferences and goals

Symptoms
Exacerbations
Side-effects
Lung function

Controlled stop 2

Controlled or uncontrolled step 5

Sever Asthma

tracks)

Moderate Asthma
Well Controlled step 3 or
step 4

CONTROLLER and PREFERRED RELIEVER

(Track 1). Using ICS-formoterol as reliever reduces the risk of exacerbations compared with using a SABA reliever

STEPS 1-2

As-needed low dose ICS-formoterol

STEP 3

Low dose maintenance ICS-formoterol

STEP 4

Medium dose maintenance ICS-formoterol

STEP 5

Add-on LAMA
Refer for phenotypic
assessment ± anti-IgE,
anti-IL5/5R, anti-IL4R
Consider high dose
ICS-formoterol

RELIEVER: As-needed low-dose ICS-formoterol

CONTROLLER and

ALTERNATIVE RELIEVER

(Track 2). Before considering a regimen with SABA reliever, check if the patient is likely to be adherent with daily controller

Other controller options for either track

STEP 1

Take ICS whenever SABA taken

STEP 2

Patient satisfaction

Low dose maintenance ICS

STEP 3

Low dose maintenance ICS-LABA

STEP 4

Medium/high dose maintenance ICS-LABA

STEP 5

Add-on LAMA
Refer for phenotypic
assessment ± anti-IgE,
anti-IL5/5R, anti-IL4R
Consider high dose
ICS-LABA

RELIEVER: As-needed short-acting β2-agonist

Low dose ICS whenever SABA taken, or daily LTRA, or add HDM SLIT Medium dose ICS, or add LTRA, or add HDM SLIT Add LAMA or LTRA or HDM SLIT, or switch to high dose ICS Add azithromycin (adults) or LTRA; add low dose OCS but consider side-effects

Assessing Asthma Severity

Mild Asthma is curruntly defined as asthma that is well controlled with as needed ICS-Formoterol, or with low dose ICS plus as needed SABA

Adults & adolescents 12+ years

Personalized asthma management

Assess, Adjust, Review for individual patient needs

Confirmation of diagnosis if necessary Symptom control & modifiable risk factors (including lung function) Comorbidities Inhaler technique & adherence Patient preferences and goals Symptoms

Moderate Asthma Well Controlled step 3 or

Sever Asthma Controlled or uncontrolled step 5

tracks)

Mild Asthma well Controlled step 1 or step 2

Exacerbations Side-effects

Lung function Patient satisfaction

STEPS 1 - 2

As-needed low dose ICS-formoterol

STEP 3

step 4

Low dose maintenance ICS-formoterol STEP 4 Medium dose

maintenance ICS-formoterol STEP 5

Add-on LAMA Refer for phenotypic assessment ± anti-lgE. anti-IL5/5R, anti-IL4R Consider high dose **ICS-formoterol**

RELIEVER: As-needed low-dose ICS-formoterol

CONTROLLER and PREFERRED RELIEVER

(Track 1). Using ICS-formoterol as reliever reduces the risk of exacerbations compared with using a SABA reliever

CONTROLLER and **ALTERNATIVE RELIEVER**

(Track 2). Before considering a regimen with SABA reliever. check if the patient is likely to be adherent with daily controller

Other controller options for either track

STEP 1

Take ICS whenever SABA taken

STEP 2

Low dose maintenance ICS STEP 3

Low dose maintenance ICS-LABA

STEP 4

Medium/high dose maintenance ICS-LABA

STEP 5

Add-on LAMA Refer for phenotypic assessment ± anti-lgE, anti-IL5/5R, anti-IL4R Consider high dose ICS-LABA

RELIEVER: As-needed short-acting \$2-agonist

Low dose ICS whenever SABA taken, or daily LTRA, or add HDM SLIT

Medium dose ICS, or add LTRA, or add HDM SLIT

Add LAMA or LTRA or HDM SLIT, or switch to high dose ICS

Add azithromycin (adults) or LTRA: add low dose OCS but consider side-effects

Assessing Asthma Severity

By this retrospective definition, asthma severity can only be assessed after good asthma control has been achieved and treatment stepped down to find the patient's minimum effective dose, or if asthma remains uncontrolled despite at least several months of optimized maximal therapy

STEP 5

Add-on LAMA
Refer for assessment
of phenotype. Consider
high dose maintenance
ICS-formoterol,
± anti-IgE, anti-IL5/5R,
anti-IL4Rα, anti-TSLP

STEP 5

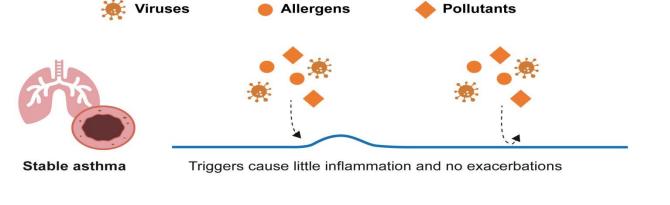
Add-on LAMA
Refer for assessment
of phenotype. Consider
high dose maintenance
ICS-LABA, ± anti-IgE,
anti-IL5/5R, anti-IL4Rα,
anti-TSLP

Add azithromycin (adults) or add LTRA[†]. As last resort consider adding low dose OCS but consider side-effects

SEVERE ASTHMA PHENOTYPES

Clinical Phenotypes

Well-established severe asthma clinical phenotypes are based on a combination of clinical characteristics that have been validated in clustering analyses of patients. These include


Clinical Phenotypes

- The timing of asthma onset (early vs late)
- Atopy status (allergic vs nonallergic),
- Lung function (persistence of airflow limitation),
- Treatment response (OCS resistance)

Clinical Phenotypes

- Other comorbidities (eg, obesity, chronic rhinosinusitis with or without nasal polyps, gastroesophageal reflux disease, atopic dermatitis, urticaria, eosinophilic esophagitis, and aspirin-exacerbated respiratory disease).
- Lung biopsy Asthmatic granulomatosis

PHENOTYPING BASED ON BIOMARKERS OF INFLAMMATION

Exacerbating asthma: increased airway immunoreactivity to exacerbation triggers

Asthma phenotypes are categorized into 2 main overarching inflammatory phenotypes defined by the predominant immunological pathways driving the disease pathology:

- Eosinophilic (type 2 high asthma)
- Noneosinophilic (type 2 low asthma)

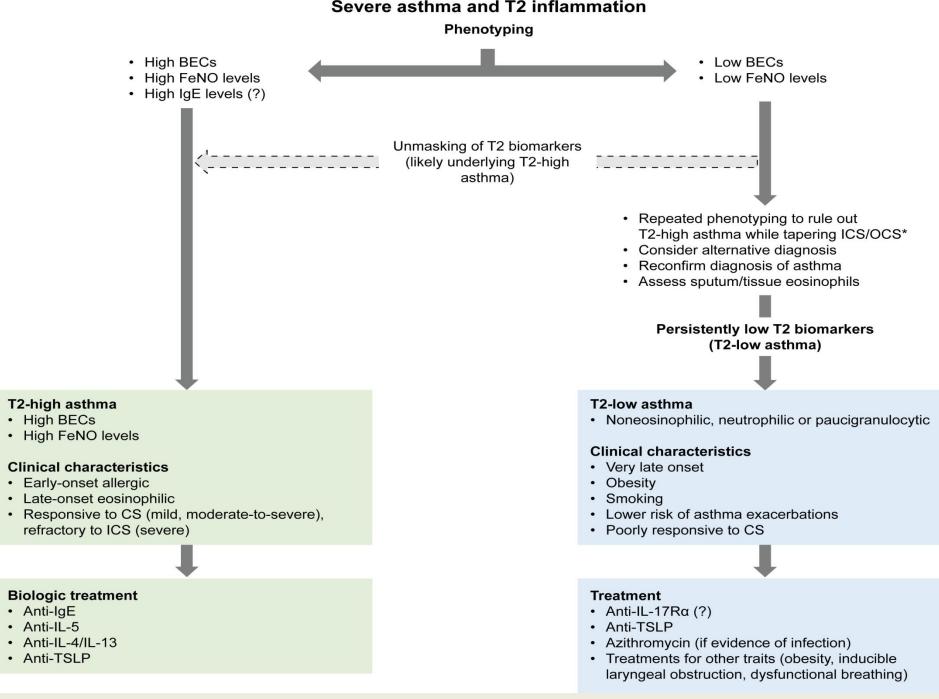
Type 2/eosinophilic asthma

Approximately **70 percent of severe asthma** is associated with persistent elevation in markers of Type 2 inflammation (**blood eosinophils** and fraction of exhaled nitric oxide [FeNO])

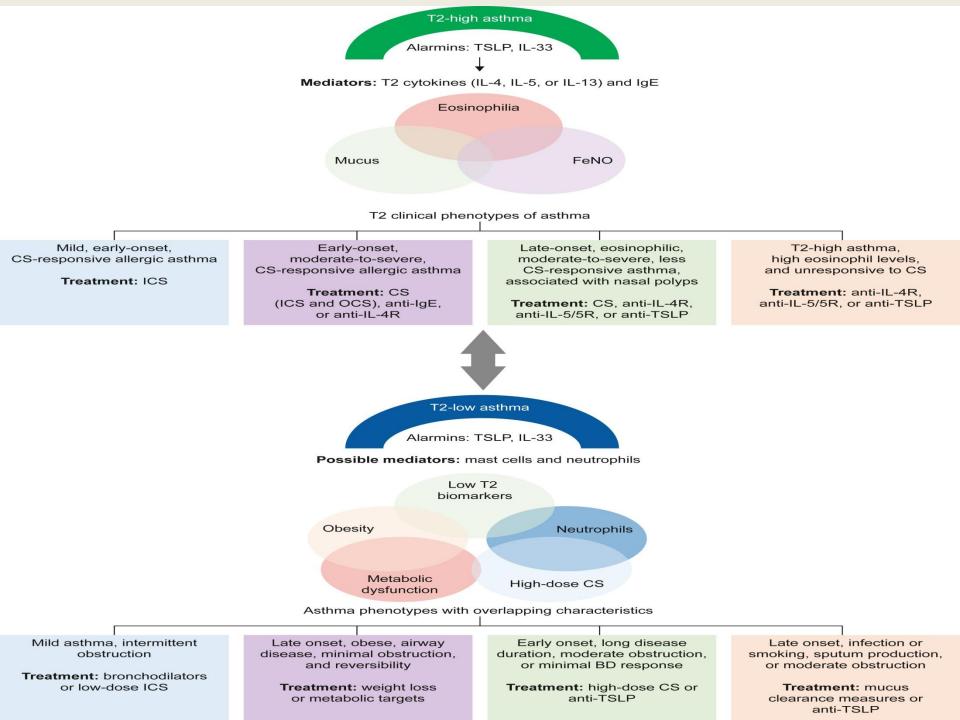
Type 2/eosinophilic asthma

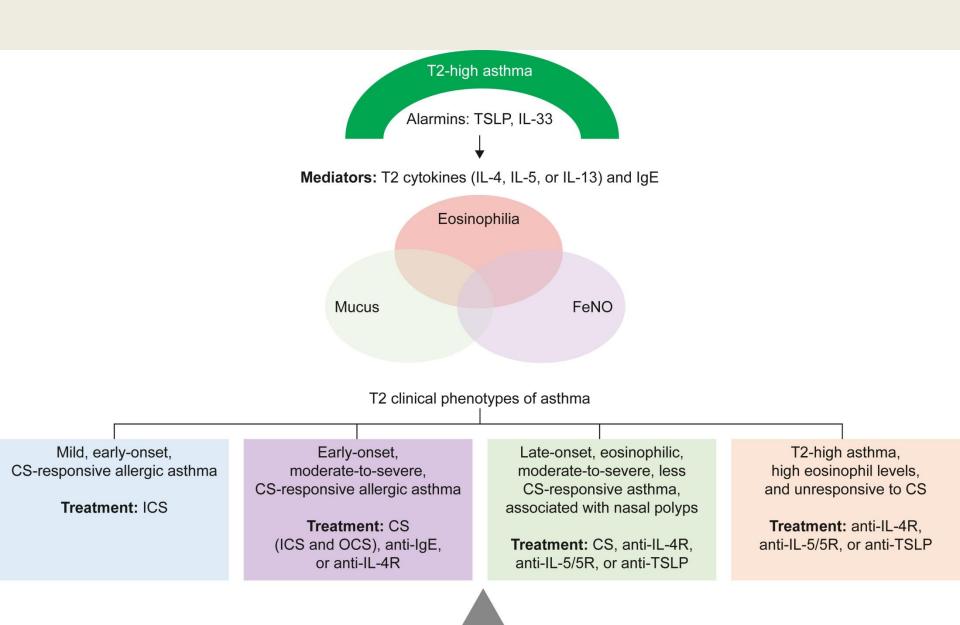
data from clinical trials suggest that blood levels of eosinophils 150 /micro L or FeNO levels above 24 ppb support an underlying active Type 2 immune process, which will respond to Type 2 specific therapy.

Neutrophilic asthma

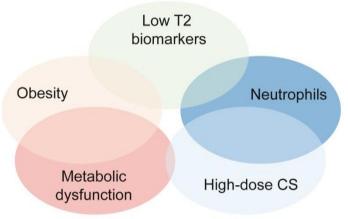

The existence of a neutrophilic asthma phenotype (eg, 40 to 60 percent neutrophils in induced sputum) is controversial

Neutrophilic asthma


The specificity of neutrophilic inflammation for a particular subtype of asthma is **complicated** by the many confounding factors that can contribute to neutrophilia in sputum,


Neutrophilic asthma


- the use of inhaled glucocorticoids,
- air pollution,
- respiratory infection,
- sensitization to aspergillus,
- gastroesophageal disease


The Journal of Allergy and Clinical Immunology: In Practice Volume 12, Issue 4, April 2024, Pages 809-823

Possible mediators: mast cells and neutrophils

Asthma phenotypes with overlapping characteristics

Mild asthma, intermittent obstruction

Treatment: bronchodilators or low-dose ICS

Late onset, obese, airway disease, minimal obstruction, and reversibility

Treatment: weight loss or metabolic targets

Early onset, long disease duration, moderate obstruction, or minimal BD response

Treatment: high-dose CS or anti-TSLP

Late onset, infection or smoking, sputum production, or moderate obstruction

Treatment: mucus clearance measures or anti-TSLP

NEW APPROACHES TO PHENOTYPING FOR THE DIAGNOSIS OF SEVERE ASTHMA AND THE MANAGEMENT OF

Phenotyping early

Patients who are **not responding** well to **low-dose ICS and a long-acting b2-agonist** should be **phenotyped early** based on **BECs, FeNO levels, and lung function** to assess treatment adherence and to support appropriate treatment decisions.

Phenotyping early

Elevated T2 biomarker levels have been associated with a **decline in lung function**, both in **healthy** individuals and in patients with **asthma**.

such, early phenotyping using easily accessible biomarkers (blood eosinophils and FeNO) allows the early initiation of appropriate targeted treatment for patients with T2-high asthma, who typically have more severe asthma than those with T2-low asthma.

Early treatment can

- prevent airway remodeling by reducing inflammation and exacerbations
- preventing lung function decline.

Anti-IgE therapy (omalizumab)

The anti-IgE agent omalizumab is approved for use in patients age six years and above with

- With moderate to severe persistent asthma eosinophilic phenotype with incomplete symptom control with inhaled glucocorticoid treatment
- an IgE level of 30 to 700 international units/mL,
- positive allergen-skin or allergen-specific IgE tests to a perennial allergen, and

Anti-IL-5 therapy

Interleukin (IL)-5 is a pro-eosinophilic cytokine that is a potent mediator of eosinophil hematopoiesis and contributes to eosinophilic inflammation in the airways. **Mepolizumab and reslizumab** are anti-IL-5 monoclonal antibodies [83];

benralizumab is an anti-IL-5 receptor alpha antibody

Anti-IL-5 therapy

is used for add-on, maintenance treatment of uncontroled severe asthma in patients who have an eosinophilic phenotype

Anti-IL-5 therapy

Clinical trial data suggest that efficacy requires an absolute blood **eosinophil count ≥150 micro/L**, but this threshold is **less clear** in patients on daily **systemic glucocorticoids**.

Mepolizumab

is used for **add-on**, maintenance treatment of severe asthma in patients who are age **six years or older**

Mepolizumab

Mepolizumab is also approved for treatment of chronic rhinosinusitis and nasal polyposis

Reslizumab

add-on, maintenance therapy of severe asthma in patients who are age 18 years or older

Benralizumab

Benralizumab is a monoclonal antibody directed against IL-5 receptor alpha that is approved by the FDA as add-on therapy in patients (≥12 years)

It appears to be more effective than anti-IL-5 antibodies in reducing eosinophil numbers.

Anti-IL-4 receptor alpha subunit antibody (dupilumab)

Dupilumab is a fully **human monoclonal** antibody that binds to the alpha subunit of the IL-4 receptor. Through blockade of this receptor, dupilumab **inhibits** the activity of both **IL-4 and IL-13**, Type 2 cytokines that play akey role in allergy and asthma.

Anti-IL-4 receptor alpha subunit antibody (dupilumab)

Dupilumab is approved by the FDA for the treatment of **moderate-to-severe**, **eosinophilic** asthma in patients **age six years and older**

Anti-thymic stromal lymphopoietin (tezepelumab)

Thymic stromal lymphopoietin (TSLP) is an **epithelial cell-derived cytokine** that participates in **asthma inflammation**.

Tezepelumab is approved by the FDA for add-on maintenance therapy in patients with severe asthma (both phenotypes) who are ≥12 years of age

